

Comparative assessment of the in vitro insecticide degradation abilities of diverse gut bacteria associated with rice stem borer complex

Subrata Goswami¹, S.B. Das², P.C. Rath³

INTRODUCTION & MOTIVATION

- Rice: A globally important crop
- Stem borers: Most dreaded pests of rice
- Very meagre reports on comparative study of gut microbiome amongst different rice stem borers
- Insecticide degrading ability of gut bacterial microbiome of rice stem borers yet unexplored at global level

MATERIAL AND METHODS

Varshadhan CRLC-899

PSB

Rice stem borer complex: Scirpophaga incertulus (YSB), Sesamia inferens (PSB) and Chilo suppresalis (SSB)

Isolation of gut bacteria

Orozco-Flores et al. (2017)

Morphological & Biochemical characterization Cappucino and Sherman (2014)

DNA isolation & PCR

Weisburg et al. HPLC (1991)Mahapat ra et al. (2017)

KOH test, Casein hydrolysis, Starch hydrolysis, Gelatin liquefaction, Indole production, H₂S production, Gram test

Quantitative analysis of insecticide degradation ability

Bacterial identity confirmation and sequence Nucleotide BLAST submission in GenBank

RESULTS AND DISCUSSION

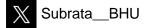
Table 2: Taxonomic affiliation & in vitro degradation efficiency of insecticides (after 72 hrs) by isolated gut bacteria

Isolate code	Scientific name	Accession number	Degradation efficiency (%)	
			Chlorantraniliprole	Thiamethoxam
YSB 1	Klebsiella sp.	ON520695	74.69 ^A (59.59)	26.62 ^D (31.06)
YSB 2	Bacillus sp.	OR186508	10.24 ^L (18.92)	33.61 ^A (35.43)
YSB 3	B. pumilus*	ON515471	59.03 ^E (50.38)	31.46 ^B (34.11)
YSB 4	A. calcoaceticus*	ON515472	74.00 ^A (59.44)	29.44 ^C (32.86)
YSB 5	B. cereus*	ON515473	68.76 ^{BC} (56.01)	21.17 ^{EFG} (27.40)
PSB 1	Stenotrophomonas sp.	ON515474	67.61 ^C (55.73)	20.38 ^{GH} (26.84)
PSB 2	E. Faecalis	ON515475	52.73 ^F (46.26)	26.58 ^D (31.04)
PSB 3	S. Maltophilia	ON515476	12.99 ^K (21.01)	20.74 ^{FGH} (27.10)
PSB 4	Staphylococcus sp.	ON520735	14.05 ^J (22.47)	21.70 ^{EF} (27.77)
PSB 5	S. Pavanii	ON520736	69.68 ^{BC} (56.38)	14.30 ^J (22.22)
PSB 6	Paraclostridium sp.*	ON520779	28.51 ^H (31.91)	31.80 ^B (34.32)
SSB 1	Bacillus sp.	ON520737	42.91 ^G (41.06)	20.36 ^{GH} (26.82)
SSB 2	B. Proteolyticus	ON520738	70.65 ^B (57.06)	19.73 ^{HI} (26.37)
SSB 3	B. Stratosphericus	ON520739	65.67 ^D (54.17)	22.04 ^E (28.00)
SSB 4	B. Subtilis	ON520740	59.40 ^E (50.44)	19.66 ^{HI} (26.32)
SSB 5	B. albus	ON520741	19.34 ¹ (26.57)	18.83 ^I (25.72)

- First report from the respective insect species
 - The gut bacterial composition of the three rice stem borers, of same guild collected from the same host at the same time, varied to a great extent

Proteobacteria: 31% Firmicutes: 69%

Bacillaceae: 50% Xanthomonadaceae:18.75% Rest: 6.25% each


CONCLUSION & FUTURE THRUSTS

- Apart from the host plants the insects gut microbiome is also significantly influenced by the respective insect species
- The differential abilities of the gut bacterial isolates to degrade the insecticides provide insights into their possible involvement in xenobiotic detoxification in their host and further study on this aspect may improve management strategies of these pests.
- The results of this study gives an exciting prospect of using these borers as novel sources for profiling insecticide-degrading microbes for bioremediation programs.

REFERENCES

Goswami, S., Das, S. B., Rath, P. C., Adak, T., Parameswaran, C., Jambhulkar, N. N., ... & Annamalai, M. (2024). Comparative assessment of the gut bacterial diversity associated with field population of three rice stem borers and their in vitro insecticide degradation ability. Journal of Asia-Pacific Entomology, 27(2), 102229.

